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Abstract—Blacklists are a fundamental component of many
cyber security products. Typically populated from a number
of sources including machine learning algorithms and malware
sandboxes, large automated blacklists carry the risk of blocking
access to necessary, benign Internet resources and negatively
impacting users. Whitelists reduce this risk by identifying items
that should not be blocked. Unfortunately, whitelists are often
poorly constructed and ill-maintained, failing to provide the
proper counter-balance and potentially weakening the security
ecosystem. This paper introduces the first published algorithm
for automated whitelist creation. Based on Bayesian statistical
learning methods and incorporating network and threat infor-
mation, it is both defensible and responsive to the environment.
For comparison, we describe two additional algorithms for
whitelisting and evaluate all three over a six-week period using
multiple data sources. Further, we demonstrate how the proposed
algorithm can be used as a quality assurance mechanism for
blacklists, a concept not previously described in the literature.

Index Terms—network security, security management, statisti-
cal learning, machine learning algorithms

I. INTRODUCTION

Modern cyber security products often attempt to proactively
protect their user base from malicious cyber actors by pre-
venting them from taking certain actions, such as visiting a
web page, downloading a file, or installing software. They
may intervene either dynamically, or via configured blacklists,
comprised of known threat indicators such as domain names
or IP addresses.1 Most Internet users have experienced the
effect of blacklists at some point, either via protections they’ve
purposefully installed, such as anti-virus products, or from
Internet firewalls and other large network security systems.
Many security products now incorporate machine learning
algorithms, in addition to utilizing curated feeds of known
malicious behavior, to increase the breadth of their ability to
identify and prevent compromise of their user’s environment.
It is common to use a hybrid approach of creating blacklists
through automated discovery of new threat indicators along
the inclusion of items that subject matter experts discovered
through more manual processes.

1While the term blacklist is widely used, a blacklist might be manifested in
several ways, not necessarily a literal list, and may contain patterns of activity
rather than strict indicators. The term blocklist is used interchangeably.

Regardless of how they are created, blacklists pose the risk
of accidentally preventing user access to necessary and benign
Internet resources. Users of anti-virus and parental control
products know the frustration of being denied access to a
website incorrectly categorized by the product’s algorithms. In
addition to errors produced by machine learning algorithms,
blacklists harvested from malware itself can also create false
alarms. Whitelists help mitigate the inherent risks associated
with blacklists. A whitelist is a domain-specific list of indica-
tors that the security product should not blacklist.2 In theory, a
whitelist contains known benign indicators that are important
to users and serves to counter mistakes that might exist in
the blacklist. In practice, whitelists are often manually crafted
and ill-maintained, resulting in stale information which may
ultimately prove to increase, rather than decrease, the risk
of compromise to users [28] [27] [30]. A common practice
observed in the literature is to use a self-determined heuristic
to subset lists of popular domains [20] [3] to create a whitelist.

While whitelists play a critical role, they are rarely discussed
and lack the attention from the community that malicious
behavior receives. This imbalance creates an Achilles heel in
security products. Overzealous machine learning algorithms
can lead to the need for an increased whitelist size, and the
lack of regular review of whitelist indicators creates unwieldy
and indefensible lists. The ideal whitelist is balanced between
ensuring that users have the best experience possible while
still providing for their security. As such, a whitelist should be
as small as possible, while covering the majority of legitimate
user activity. Most importantly, a whitelist should be up-to-date
and contain only indicators believed to be benign with a high
degree of confidence.

Machine learning algorithms offer the opportunity to au-
tomatically determine whitelists, however there are some
restrictions that make this challenging. Because of their role in
controlling security products, whitelists are highly scrutinized,
both for what they contain and what they do not. The ideal
algorithm is easily interpreted, defensible, and able to adjust
to changes in the environment. This latter condition implies
that the model does not suffer from model drift3, a common
problem in machine learning, in which the model’s performance

2More generally the whitelist can contain patterns of activity.
3Model drift is also referred to as concept drift.978-1-7281-6383-3/19/$31.00 ©2019 IEEE



deteriorates over time due to changes in the data environment.
Many commonly used machine learning approaches require
significant volumes of labeled data and require complete
retraining on a regular basis.

Our solution addresses these concerns through the use of
Bayesian inference models, a method of statistical learning.
The algorithm combines user behavior, the majority of which
is benign, with known threats to create a classifier that learns
over time. The result is a whitelist that continually adjusts to
changes in the user and threat environment, is robust to error,
and is defensible. As threat levels change within the network,
so will the size and content of the whitelist.

In the sections that follow, we consider the use case of a
Domain Name System (DNS) Firewall in which the whitelist
and blacklist consist of domain names. We’ll introduce three
different approaches to automated whitelist creation for this
use case. All three leverage popularity rankings of Internet
domains, and two incorporate threat information. These can be
implemented using publicly available data or collected network
events. To illustrate the algorithms, and show the advantages
of the Bayesian inference approach, we examine three sources
of data and the resulting whitelists over a long period of time.
To set the stage, we begin with a discussion of whitelisting
in computer security products and then introduce the DNS
vocabulary necessary for the subsequent examples.

II. BACKGROUND AND RELATED WORK

There is very little in the literature regarding the creation
and maintenance of whitelists. The Internet Storm Center
(ISC) [14], among others, provide a whitelist for use by the
public, but with little insight into how it was generated or
is maintained. Many online articles and blogs provide advice
to companies on manually curating whitelists for email and
user applications [28]. The primary focus of these types of
whitelists is to counter issues with email spam filtering, which
may cause legitimate emails to be diverted to a user’s spam
folder. While automated spam identification serves a valuable
role in user productivity, early algorithms were particularly
likely to falsely identify email as spam, causing users to miss
it; hence, spam whitelists were invented.

In the limited context of spam filtering, the effectiveness
of whitelists and the burden of maintaining them has been
studied. The results of that 2002 study [9] found spam whitelists
both effective and, after initial configuration, relatively easy
to maintain. In [16] the author converted a statistical method
for identifying spam via content analysis into a method for
whitelisting email. With respect to spam within Twitter, [5] used
graph theoretic approaches to identify a whitelist of Twitter
users.

Most other published references for whitelisting are not truly
related to the topic of this paper; we mention them here for
completeness. For example, many services exist that allow
products or users to interactively query proprietary internal
blacklists and whitelists, including SURBL [26] and Google
Safe Browsing [11]. In most cases, these systems are designed
for blacklist queries, in which software such as a browser

or anti-virus product queries a remote database to determine
whether the domain or IP address is considered malicious
in some fashion. These systems are often implemented via
DNS in accordance to RFC 5782 [19]. While entitled "DNS
Whitelisting", RFC 5782 addresses the use of the DNS protocol
to check whitelists, rather than providing a whitelist for DNS
itself. Beyond the title, this RFC has no overlap with the subject
of this paper.

As in the case of the RFC 5782 [19], language surrounding
the concept of whitelisting can be confusing. Many references
use whitelists in the context of allow-only filters, meaning
that only items in the whitelist are allowed by default. This
approach [29] limits network access for users without explicit
consent and was more typical in web browsers in the early
2000s. In this paper, we do not consider this type of whitelist.

A second major area of whitelist literature surrounds
application whitelisting, for which the National Institute of
Standards and Technology (NIST) has provided guidelines [25].
Application whitelisting is slightly different than the use of
whitelisting in this paper, although the algorithm presented here
may apply to that use case in certain scenarios. In application
whitelisting features of software, either behavior-based or
signatures, e.g. SHA-1 hashes, are used to determine whether
the software should be allowed to run in a user’s environment.
Application whitelisting algorithms attempt to identify a set of
benign activities within the execution of a piece of software.

It is fairly common in cyber security literature to assume
that popular domains are benign. In creating a system for DNS
reputation in [3], for example, the authors assume the top
10,000 domains reported in the Alexa Top1M domain list [2]
to be “known good domains.” According to [18], over one
hundred top-tier studies in cyber security between 2014 and
2018 based their experiments and conclusions on Alexa and
other public ranking sources. The authors found significant
reliability issues with each of the sources they reviewed and
formulated their own merged ranking, TRANCO [18]. Similar
issues are raised in [24], and they further found that thirty-eight
papers published at major security conference venues in 2017
leveraged these lists for their results. Our own data analysis
revealed that the Alexa rankings did not conform to established
natural properties in rank-frequency data, specifically statistical
consequences of Zipf’s Law, adding further suspicion to the
list creation. In most cases, researchers use the lists as a benign
set of domains. In some cases, as in [17], the authors required
that domains remain popular over some period of time to
be considered benign. The use of top ranked domains for a
whitelist is not limited to security research; as one example, the
Quad9 DNS service reportedly uses the Majestic Million [22]
as the basis for its whitelist [23]. Others [8] have reported
using Alexa and Cisco Umbrella [6] for their whitelists. In
all cases, the criteria for determining the subset of popular
domains for whitelists is arbitrary.

The algorithm presented in this paper is well suited to use
cases where there exists a set of potentially benign indicators,
the ability to rank the impact of blocking those indicators, and
a set of known malicious indicators that can be mapped into



the same space. It is particularly applicable to the case of DNS
Firewalls, which we introduce in Section III and carry through
the paper as an example.

III. DNS FIREWALLS

The domain name system is a global, hierarchical, distributed
database which serves, among other things, to map domain
names to Internet Protocol (IP) addresses. While relatively
straightforward in concept, in practice the global DNS is
complex to the point of being arcane [12]. For the purpose
of this paper, we introduce a limited scope and vocabulary;
the interested reader can find more depth in the operation and
security of DNS in [15] and [21].

The domain name system operates as a query-response
protocol, in which a query for a fully qualified domain name
(FQDN) is made by a client, or endpoint, and is answered
via an iterative process known as resolution. An FQDN is
made up of a series of text labels separated by periods. For
example, the FQDN www.google.com has three labels
[’www’, ’google’, ’com’]. While it is possible for an endpoint
to resolve DNS queries themselves, in practice, most devices
rely on large recursive resolvers to perform resolution on
their behalf. For example, Internet Service Providers provide
recursive resolvers for their customers.

Much modern malware, and other threats like phishing
attacks, require the resolution of domain names to IP addresses.
As a result, a significant portion of the cyber threat landscape
transits the domain name system in some fashion. DNS
Firewalls were designed to provide security to users by
enforcing rules based on domain names or IP addresses. In
a typical scenario, the DNS Firewall is a component within
a recursive resolver. It consults a list of domain names and
IP addresses that are known to be malicious while resolving
DNS queries: the blacklist. If the DNS Firewall receives a
query for a domain on the blacklist, or that resolves to an IP
address on the blacklist, it may return an incorrect IP address
or respond with a “no such domain” response. The result is that
the user is unable to access the malicious resource. In other
cases, the blacklist may be the result of online machine learning
algorithms. The full breadth of DNS Firewall capabilities is
beyond the scope of this paper. In most settings, a DNS Firewall
is installed in a relatively large network and its action impacts
many users. Even more so than client-based cyber security
products, it is particularly important that the DNS Firewall
decisions be as accurate as possible. In addition to a blacklist,
a DNS Firewall may use a whitelist to ensure that it does not
interfere with user’s access to legitimate Internet resources. For
the purpose of this paper, we consider the whitelist to be a list
of DNS domain names. If a domain is on the whitelist, the
DNS Firewall does not block access to it; in this context we
say that the whitelist covers this domain and the associated
user activity.

IV. WHITELIST CREATION ALGORITHMS

As manual creation and maintenance of whitelists is fraught
with issues, we wish to automate these processes. To begin,

we adopt the common assumption that very popular domains,
such as google.com, are unlikely to present a threat and,
moreover, that blocking access to these domains will adversely
impact users. This is generically true given the nature of Internet
communications: even the most widespread malicious threat
will have limited reach in comparison to globally popular
resources. Given this assumption, one approach is to order
domains according to popularity and add domains that are
more popular than a selected threshold to the whitelist. We
will see two variations of this approach in Section IV-A.

While easy to implement, the popularity-based algorithms
have a number of shortcomings. We address one issue in
Section IV-B by incorporating threat data to determine the
whitelist threshold. While creating a more informed whitelist,
the simple inclusion of threat data will not adjust to changes
in the environment and requires performance monitoring over
time. We introduce our solution, a Bayesian inference model,
in Section IV-C to address these lingering issues and provide
a whitelist that is balanced between user experience and user
security.

A. Popularity-Based Whitelists

Given a set of domains, we create a rank ordering on the
set as a way of measuring the potential impact on users if
access to the domain is blocked. Throughout this paper, rank
has a value in 1..N , where 1 is the highest rank, meaning
the most important. A popularity measure is a metric that
creates a rank ordering of the data according to some aspect of
importance within the environment. For example, the number
of DNS queries for a domain over some period of time in a
network, or alternatively, a graph-based measure like PageRank.

We’ll refer to a set of ranked data based on some popularity
measure as popularity data and the association of the data with
the measure that creates the rank ordering as the popularity
model. Given one set of data, such as registered domains,
one might create a number of associated popularity models
using different ranking algorithms. We might consider, for
example, aggregate query counts for domains within a network.
These counts might be normalized in different ways to create
different popularity models, for example, by the time-to-live
of the response record, or the average number of queries per
subdomain.

If event data is not available, popularity models for Internet
domains can also be obtained from publicly available lists,
such as Alexa [2], Majestic [22], Cisco Umbrella [6], and
TRANCO [18]. These ranked lists are published daily and
are commonly used in cyber security research as a source
of benign domains. In most public sources, the underlying
data that supports the rankings is not released, however the
algorithms presented here can still be applied.

Given a popularity model, as an initial approach to whitelist
creation, we set a fixed threshold rank M and whitelist all
domains more popular, or with higher rank, than M . The result
is a simple classifier on domains that identifies elements of
the whitelist. By regularly updating the popularity data, this
solution addresses concerns about stale or irrelevant items in



the whitelist. As seen in Section II, both the cyber security
research and product communities have used this approach. In
the literature most thresholds appear arbitrarily chosen.

To create a data-driven threshold, in situations where we
have underlying frequency information, we can create a fixed
threshold using patterns of user behavior over time. Assume
we have a popularity model of our DNS data in which we
can associate each ranking to the probability of seeing that
domain in traffic. In that case, each domain that is added to
the whitelist accounts for a certain percentage of expected
user traffic and we can choose a threshold M that reflects the
amount of coverage we desire in the network. This approach
allows the size of the whitelist to change over time, while
maintaining a fixed percentage of coverage.

Statistically speaking, we calculate the cumulative distri-
bution function (CDF) for the domains in popularity rank
order, that is, we compute the cumulative rank-frequency. A
whitelist can be determined by a fixed percentage within the
cumulative distribution. Specifically, domains that contribute
to normal user activity above the fixed percentile are included.
An example cumulative distribution function for DNS domain
traffic, with a possible threshold of 75%, is shown in Figure 1.
Because the cumulative distribution function of DNS queries
follows a generalized power law distribution [1], the size of
the whitelist grows dramatically for each percentage point of
coverage gained above a certain point. In some cases, it may
be more important to ensure almost no chance of interruption
to the user and a high threshold, e.g, 95%, may be set. In
other cases, it might be more important to minimize the size
of the whitelist, in which case the ‘elbow’ of the cumulative
distribution function, that is the point at which the slope quickly
diminishes, may be a more reasonable threshold. Using a
percentile threshold, rather than a fixed rank threshold, allows
for the number of domains on the whitelist to change according
to changes in the user environment. In Figure 1, the threshold
of 75% occurs slightly after the ’elbow’ of the distribution.
Increasing the whitelist in this example from 75% to 76%
coverage would require the addition of 1500 more domains.

Unfortunately, using popularity alone is risky for multiple
reasons. Because cyber threats can cause spikes of activity
that make malicious domains very popular for some time, it is
challenging to determine exactly what constitutes “popular
enough” to be part of a whitelist. In addition, collection
biases in the data used to determine popularity may render it
ineffective for protecting users in a specific, e.g, customer,
network. This can easily lead to inadvertently including
malicious domains in the whitelist. In the next section, we see
how the introduction of threat data can improve our ability to
determine an appropriate value for the threshold M .

B. Threat-Informed Whitelists

By including threat data into our algorithm, we can create a
more informed threshold. In this scenario, a threat is a domain
associated with a malicious actor and referred to as a malicious

domain.4 As with the popularity data, we consider a set of
threats to be threat data and the ordered set, using the ranking
imposed by the associated popularity model, to be the threat
model. The rank of the most popular threat in the threat model
is called the threat rank, also referred to as the threat level.
Only the highest ranking, rather than the aggregate set of threats
is used for a few reasons. First, we know our insight to threat
is limited. Cyber threats are constantly emerging, and their
presence in global Internet traffic is conditioned on a number
of factors that cannot be well measured. Second, the rank
ordering is itself an estimate and including all known threats
into the model introduces more uncertainty. Finally, the use of
a single data point allows for a simpler, more intuitive model.
There are a number of publicly available, commercial and
non-commercial, threat feeds that can be used for this purpose,
such as SURBL [26], Bambenek [4], and DGA Archive [7].

Figure 1 demonstrates how the popularity rankings of
domains within a DNS environment compare to threats within
a blacklist, with respect to the cumulative probability by rank.
The threat over two time periods, while mostly below the 75%
threshold, varies widely. This volatility make the choice of a
static threshold which attempts to both cover user activity and
minimize threat difficult. Using a fixed threshold created in this
manner is more effective than popularity alone, but ultimately
carries the same risks because of the inability to optimize the
threshold.

Fig. 1. A comparison of the rank of threat indicators during two time periods
to overall popularity rankings for a sample DNS and blacklist data source.
The density is measured over the top one million domains; only the top 200k
are shown in the figure.

C. Bayesian Inference Model

To address the shortcomings of fixed threshold whitelist
algorithms, we use Bayes Theorem (Equation 1) to determine
a threshold every time the whitelist is updated. This theorem
quantifies a relationship between conditional probabilities, that
is, probabilities that are dependent on a set of observations. In
the case of whitelist creation, we want to infer the most likely
current threat rank from a set of observations over time. The
resulting whitelist is comprised of those domains with rank

4The malicious domains might be thought of as members of the associated
blacklist although in a general setting they may not be the same.



higher than this threat rank and is entirely replaced with every
iteration of the algorithm. This determines a one-class classifier
for whitelist domains within the space of ranked domains.
The resulting classifier differs from the classifier described
in Section IV-A in that the threshold is not fixed, either as
a percentile or size, and changes over time; it continuously
adapts to a changing user and threat environment.

To formalize this method, assume we have a set of domains,
D, and an associated ranking on the set valid at time t.
Moreover, assume a subset of these domains, T , are known
to be malicious. The observed threat rank within T , at time t,
according to the ranking imposed by D is denoted E. Note
that we do not know all threats, and therefore the true highest
ranking threat is unknown to us. We wish to infer the most likely
true threat level, or threat rank, based on the observation, E,
and prior information. Each possible threat level is a hypothesis,
H , and the set of hypotheses consists of the integer ranks, 1..N ,
where N >> 0, and N = 1 is considered the highest rank.

Let P (H|E) be the conditional probability that H is the true
threat rank given that E is the observed threat rank. According
to Bayes Theorem,

P (H|E) =
P (E|H) ∗ P (H)

P (E)
, (1)

where P (E|H) is the probability of observing E given that
H is the true threat rank, while P (E) and P (H) are the
probability of E and H across all possible hypotheses and
observations, respectively.

In our application, there is a time series of observations, and
Bayes Theorem is used to create a series of equations. The
probability of each hypothesis, H , will change over time based
on these observations. Let

Pt(H) = P (H|E1, ..., Et), (2)

where P (H|E1, ..., Et) is the probability of H conditioned on
the sequence of observations E1...Et and P0(H) be the initial
probability prior to any observations. Considering all values of
H , Equation 1 provides an algorithm for updating Pt(H) over
time. Since the P (E) is independent of the hypotheses, it does
not impact the maximum likelihood and is dropped, leaving

Pt(H) ≈ P (Et|H) ∗ Pt−1(H). (3)

where t ≥ 1 and Et is the observation at time t. When con-
sidered over all possible observations, Pt(H) is a probability
distribution. The threshold for our whitelist is the rank H with
the maximum likelihood Pt(H|E).

D. Threat Review

A side effect of this algorithm is the ability to detect
problems in a blacklist, creating a quality assurance loop
for the security product. To our knowledge, this is the first
published algorithm for correcting blacklists. After computing
the whitelist threshold, purported threats with a higher rank
than the established threshold may exist. While the domains
may be actual threats, they may also be false positives in
the threat data. For example, malware that leverages domain

Fig. 2. A simulation of the Bayesian inference Model. The likelihood
distribution and threshold is seen to adjust over time.

generation algorithms (DGA) for their command and control
may coincidentally generate existing legitimate domains. In
other cases, threat feeds may contain legitimate domains that
malware uses for ancillary purposes, such as establishing the
current time on a compromised host. These domains can be
flagged for manual review to ensure that they are indeed active
threats. The threat review capability allows us to find faulty
entries in the blacklist that may otherwise be hard to detect.

V. RESULTS

To illustrate the algorithm, we implemented both threat-
informed static threshold and Bayesian inference model algo-
rithms for whitelisting using multiple sources of popularity
data and evaluated them over a six-week period. For the
popularity model, we compared the publicly available sources
Alexa [2] and Majestic Million [22], as well as a large source of
DNS query-response logs obtained from Farsight Security [10],
included in their Channel 202 feed.

These sources were chosen based on their adoption in
the literature and to demonstrate the algorithms across three
different methods for creating a rank ordering. Alexa rankings,
according to the company [2], are based on a combined measure
of reach and page views computed over a trailing 3 month
period. In contrast, Majestic rankings are determined by the
number of referring IP subnets for a given domain name
website [22]. Both of the publicly available lists are restricted
to website traffic, while the DNS source contains a much
broader range of domains, e.g, those related to content delivery
services and ad networks. The Farsight records are collected
from a globally distributed set of recursive resolvers and
contain query-response events between the recursive resolvers
and authoritative name servers. The volume exceeds 200,000
observations per second across the sensor array [10]. The
rank ordering of Farsight events was computed by totaling the
number of queries per second level domain over a week and
sorting by total count. These sources produce very different
ranked lists, as exemplified in Table I.

The associated threat model was derived from the Infoblox
Threat Intelligence Data Exchange (TIDE) [13]. The TIDE
data set contains threat indicators for malware command



TABLE I
A COMPARISON OF THE TOP FIVE RANKED DOMAINS FOR ALEXA,

MAJESTIC, AND DNS QUERY DATA FOR OCTOBER 5, 2019.

Rank Farsight Alexa Majestic
1 akamaiedge.net google.com google.com
2 akamaidns.net youtube.com facebook.com
3 akamai.net tmall.com youtube.com
4 trafficmanager.net baidu.com twitter.com
5 fbcdn.net sohu.com linkedin.com

and control domains, malware domain generation algorithms
(DGA), malware download sites, and others, in seventeen
aggregate feeds. The TIDE data includes both internally curated
threat feeds, as well as some available from widely-known
third party partners, such as SURBL [26]. All domains rated
by the vendor as a "high" threat were included and were not
further evaluated.

The popularity for any given indicator may vary widely
across sources. We don’t expect, for example, either Alexa
or Majestic to contain traffic from malware such as Necurs
or Pykspa, which create command-and-control domains using
a domain generation algorithm (DGA) and are not observed
as web pages. Table II shows how the popularity of sampled
malicious domains varies across different data sources. This
kind of variation is consistent with the findings of other authors,
including [18] and [24]. For the application of whitelisting,
these differences emphasize the importance of treating each
popularity source independently.

For these demonstrations, whitelists were created by using
the three algorithms introduced in Section IV. The first is the
simple static threshold, which is based on the assumption that
popular domains are benign and ignores threat data. In the first
model we simulate whielisting a large majority of the expected
user traffic. We call this the max-coverage threshold. In the
second implementation, we reviewed several months of historic
threat data and chose a static threshold that minimized the threat.
We refer to this static threshold as the min-threat threshold.
Lastly, we implemented the Bayesian inference model over the
same data.

Recall from Section IV-A that domains are ranked from
1 . . . N , where the most popular, or highest, rank is 1. We
say that a domain is above the threshold if it has a higher
rank than the threshold. The whitelist size is defined by the
number of domains above the threshold that are not identified
as malicious. For each of the popularity sources (i.e., Alexa,
Majestic Million, and Farsight), we set thresholds as follows:

• min-threat static threshold using either the top 12, 000
domains for Alexa and Majestic, or the top 75% with
respect to density for Farsight.

• max-coverage static threshold using the top 200, 000
domains for Alexa and Majestic or the top 95% with
respect to density for Farsight.

• Bayesian threshold using the observed threat rank.
This produces a total of nine whitelists weekly for compari-

son. For each of these, we calculated the following metrics:
• the threshold of the whitelist,

• the threat rank, i.e. the rank of the most popular threat
observed, and

• the number of domains in the threat data that were above
the threshold, i.e, the number of domains needing review,
also referred to as the number of threat "hits".

The key takeaways, detailed in the following sections, are
for the goal of balancing coverage and threat,

• the popularity of threat varies so widely that a fixed static
threshold can not be picked with confidence,

• even thresholds set to minimize threats can contain a
significant number of indicators requiring review,

• the Bayesian model significantly increases coverage,
without a tremendous increase in threat,

• the Bayesian model adapts to changes in the environment,
and the threshold moves, but does not change dramatically
with outliers in the threat data.

A. Threat Rank Variance

One might hope to use classical statistics techniques to
identify a suitable static threshold based on a history of threat
data. To this end, we attempted to find a confidence interval
for the most popular threats. The variance for each source,
however, was too high. This problem can be illustrated using
the coefficient of variation, a normalized measure of variance
that allows for comparison across data sets. Table IV shows
that the coefficient of variation was approximately 140%, 46%,
and 32% for Farsight, Alexa, and Majestic, respectively. This
means that the popularity of threats is very unstable and implies
that a fixed threshold that accurately represents the threat can
not be reliably determined.

The threat rank varied markedly not only within a data
source over time, but also across data sources. During the
evaluation period, we can see a threat rank as high as 64 in the
DNS query logs, and as low as 127, 330 in Alexa. Although
Alexa and Majestic Million are popularity rankings of domain
names, they are curated in very different ways from each
other and the DNS query logs. Referring to Table II, we are
reminded of how disparate the threat level for a fixed domain
can be across sources. The variance across Alexa, Majestic, and
Farsight demonstrates the importance of generating whitelists
from sources relevant to the use case environment, but also
with thresholds relevant to the specific source.

B. Threat Comparison by Model

Reportedly malicious threat indicators exist above every
whitelist threshold as seen in Table III. Recall that we’ve
assumed that our knowledge of the full set of threat indicators
is imperfect. Thus the quantity of threats above each whitelist
threshold should not be interpreted literally. Instead it tells
us two things: a rough estimate of the threat remaining in
the whitelist, and the human resources required to review the
known potential threats. The former indicates the risk to users
of the whitelist and the latter is potential gain in removing
faulty, but popular indicators from the blacklist.

Most evident from the results in Table III and Figure 3 is
the risk involved with the max-coverage static threshold. In all



TABLE II
A COMPARISON OF THE POPULARITY OF SEVERAL REPORTEDLY MALICIOUS DOMAINS BY RANKING SOURCE IN JUNE 2019.

Domain Threat Type Farsight Alexa Majestic
fox.to ConfickerC N/A 127,607 N/A

cpagrip.com UncategorizedThreat 137,015 23,615 184,069
newsfacce.com MalwareGeneric 14,066 234,565 N/A

altmea.com Phishing 194,693 331,134 N/A
setforconfigplease.com MalwareDownload 579,461 N/A 28737

cases, whitelists of around 200, 000 domains carry significant
risk of threat inclusion. With median values ranging from 163
to over 1800, regardless of data source, incur both significant
threat and costly human review. Even the min-threat threshold
includes some threat, and the range overlaps significantly in
all cases with the Bayesian model. This implies that we can
increase coverage for users with limited increase of threat risk.
For the Farsight data, we can quantify this increased coverage.
Overall, using the whitelist sizes in Table IV, we see that the
Bayesian model increases coverage by about 10%.

C. Model Threshold Behavior

Finally, we considered how the whitelist generated by the
Bayesian algorithm adapted to changes in the threat landscape
over time. In Table IV we observe a trend of a threshold
decrease whenever a threat rank is observed to be more popular
than in the previous week. This means that if a threat is
observed to be popular, our model will slightly decrease the
size of the whitelist — once our model is learning from the
data and predicting higher threat ranks. The same analogy can
be made for the increasing thresholds. In this way, we can see
that the Bayesian model adjusts to the threat, and the threshold
moves accordingly, but it will not dramatically "swing" based
on a single observed threat. For example, within the Farsight
data, we observe a threat rank of 64 in week 3. Zipf’s Law
would suggest that this extremely popular threat might be a
false positive, and we see that the Bayesian threshold moves
only slightly from 38, 761 the prior week to 38, 555. If this
occurs in isolation, it’s impact on the whitelist is minimal and
temporary. On the other hand, sustained trends in the threat
data will cause the threshold to continually move closer to that
new range.

Table IV shows the lists threshold have low variation over
time. In Section V-B we observed that Alexa has a lower
median threat ranks, hence slightly increasing the whitelist
threshold in Figure 4. For Majestic we observe the opposite
behavior: with greater median threat rank our model has the
tendency to decrease the size of the list. Figure 4 shows the
posterior probabilities, by source, after each round of iteration.
With every new threat rank a new threshold distribution is
generated.

An informed prior is used to obtain an optimal threshold
more quickly. In Figure 4 the Farsight informed prior (dark blue
line) is closer to the predicted values in the following weeks,
and varies slightly across time. For Alexa and Majestic, shown
in Figure 4, the prior is more distant from the subsequently
weeks threshold, taking a longer time to stabilize to an optimal

threshold. Hence the threshold variation is higher for these
data sources, as observed in Table IV.

VI. IMPLEMENTATION CONSIDERATIONS

There are a number of implementation considerations for
each of the whitelisting algorithms presented in this paper. Most
important are the application and data sources. As we saw in
Section V, the threat level associated with a given indicator may
vary widely depending on the popularity source. Applications
in the DNS Firewall space that leverage only Alexa or Majestic,
for example, as a popularity model will miss a large portion
of the threat in their environment. Additionally, the rankings
will incorrectly represent the popularity of the domains in the
application domain. The high numbers in Table III comment
both on the risks inherent in whitelists and the potential faults
in blacklists. In practice, blacklists used in whitelist creation
should be carefully curated.

Implementing the Bayesian algorithm does require tuning
that depends on the popularity and threat data sources, as
well as the context of the security product. In particular, the
algorithm requires a good model for P (E|H), the likelihood of
observing E as the maximum threat level, given that hypothesis
H is true, as well as an initial prior, P0(H), to initialize the
algorithm.

In terms of whitelists based on popularity ranking, P (E|H)
represents the likelihood that E is observed as the highest
threat rank given that H is the true highest threat rank. In
general, this probability distribution is unknown and must be
estimated based on the use case. While tempting to assume,
for example,

P (E|H) = 1, E = H,

P (E|H) = 0, E 6= H,

this approach does not allow for noise in collection and creates
an inflexible model. The use of discrete step functions will
quickly eliminate hypotheses from further consideration, and
it is recommended to instead use a continuous estimate which
assumes some error in observation. A likelihood distribution
that is too restrictive, even if continuous, will result in
collapsing the space of hypotheses. While the appropriate
estimate for P (E|H) is highly dependent on the data source
and use case scenario, starting with a Gaussian distribution
centered on H and refining it based on the data sources is
effective.

The selection of an initial prior, P0(H), probability distribu-
tion is also important. While in theory one can derive a good
Bayesian model given sufficient data using a uniform prior,



TABLE III
QUANTITY OF REPORTED THREATS ABOVE WHITELIST THRESHOLDS, BY MODEL TYPE.

min-threat max-coverage Bayesian
Source range median range median range median
Farsight [4, 78] 71 [57, 773] 711 [11, 151] 138
Alexa [5, 49] 40 [11, 179] 163 [6, 66] 56

Majestic [7, 95] 90 [29, 2073] 1886 [11, 392] 295

Fig. 3. Median whitelist size and number of threats above the threshold, by model type.

TABLE IV
IMPACT OF THREAT RANK ON THE BAYESIAN WHITELIST THRESHOLD.

Period Farsight Alexa Majestic
Threat Rank Whitelist Threshold Threat Rank Whitelist Threshold Threat Rank Whitelist Threshold

Week1 39078 36783 75406 35460 39242 38525
Week2 41299 38761 127330 35460 40000 39038
Week3 64 38555 54279 40518 22068 35406
Week4 83 38346 39069 40311 21898 32982
Week5 122 38126 45160 40816 21951 31278
Week6 334 37823 50802 41772 18464 29801
Median 228 38228 52540.50 40414 22009.50 34192.50

Variation 139.92% 1.7% 45.81% 5.21% 32.36% 10.07%

Fig. 4. Prior and posterior probability distributions observed across 6 weeks, and whitelist rank threshold defined by the inferred maximum likelihood.

that is, the assumption that all hypotheses are equally likely, an
informed prior is more efficient. We used a historical record of
maximum threat levels to establish the initial prior, converting
the histogram to a continuous distribution via a kernel density
estimate and normalizing for the range of hypotheses.

One might want to combine multiple sources of popularity
data to create whitelists, for example, to take advantage of
different perspectives provided by publicly available lists and
privately obtained event records. While sharing a dependent
variable, independently created rankings are fundamentally
different data sets and there is not a mathematically sound
means to merge them. Instead, each data source should be
processed separately, and a consolidated whitelist created

through the union or intersection of the results. As can be
seen in Table I, different data sources and ranking measures
can produce quite different results even in the most popular
domains. Further the popularity of threats can vary dramatically
across sources, as seen in Table II.
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